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0 Preliminaries

� Theorem 0.1 (The Division Algorithm).

Let a and b be integers with b > 0. Then there exists unique integers q and r with the property
that a = bq + r, where 0 ≤ r < b.

� Theorem 0.2 (GCD is a Linear Combination).

For any nonzero integers a and b, there exists integers s and t such that gcd(a, b) = as+ bt.
Moreover, gcd(a, b) is the smallest positive integer of the form as+ bt.

� Corollary.

If a and b are relatively prime, then there exists integers s and t such that as+ bt = 1.

� Euclid’s Lemma.
p|ab implies p|a or p|b

� Theorem 0.3 (Fundamental Theorem of Arithmetic).

Every integer greater than 1 is a prime or a product of primes. This product is unique, except
for the order in which the factors appear.

0.1 Modular Arithmetic

For integers a, b, and n, if
a mod n = c

b mod n = d

then
(a+ b) mod n = (c+ d) mod n

(a− b) mod n = (c− d) mod n

(a ∗ b) mod n = (c ∗ d) mod n

Definition: Least Common Multiple
The least common multiple of two non-zero integers a and b is the smallest positive integer that
is a multiple of both a and b. We will denote this integer by lcm(a, b).
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2 Groups

Definition: Group
Let G be a set together with a binary operation (usually called ‘multiplication’) that assigns to
each ordered pair (a, b) of elements of G an element in G denoted by ab. We say G is a group
under this operation if the following three properties are satisfied.

1. Associativity. The operation is associative; that is, (ab)c = a(bc) for all a, b, c in G.

2. Identity. There is an element e (called the identity) in G such that ae = ea = a for all a in
G.

3. Inverses. For each element a in G, there is an element b in G (called an inverse of a) such
that ab = ba = e.

Definition: Abelian
A group G is called Abelian if the operation is commutative; that is, for all a, b in G, ab = ba.

� Theorem 2.1 (Uniqueness of the Identity).

In a group G, there is only one identity element.

� Theorem 2.2 (Cancellation).

In a group G, the left and right cancellation laws hold; that is, ba = ca implies b = c, and
ab = ac implies b = c.

� Theorem 2.3 (Uniqueness of Inverses).

For each element a in a group G, there is a unique element b in G such that ab = ba = e.

� Theorem 2.4 (Socks-Shoes Property).

For group elements a and b, (ab)−1 = b−1a−1.

3 Finite Groups; Subgroups

Definition: Order of a Group
The number of elements of a group (finite or infinite) is called its order. We will use |G| to denote
the order of G.

Definition: Order of an Element
The order of an element g in a group G is the smallest positive integer n such that gn = e (in
additive notation, ng = e). If no such integer exists, we say that g has infinite order. The order
of an element g is denoted by |g|.

Definition: Subgroup
If a subset H of a group G is itself a group under the operation of G, we say that H is a subgroup
of G, denoted H ≤ G. If H is a strict subset of G, also H < G.
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� Theorem 3.1 (One-Step Subgroup Test).

Let G be a group and H a nonempty subset of G. If ab−1 is in H whenever a and b are in
H, then H is a subgroup of G.

� Theorem 3.2 (Two-Step Subgroup Test).

Let G be a group and H a nonempty subset of G. If ab is in H whenever a and b are in H
(H is closed under the operation), and a−1 is in H whenever a is in H (H is closed under
taking inverses), then H is a subgroup of G.

� Theorem 3.3 (Finite Subgroup Test).

Let H be a nonempty subset of a group G. If H is closed under the operation of G, then H
is a subgroup of G.

Definition: Cyclic Group, 〈a〉
A group G is cyclic if G = 〈a〉 = {an

∣∣ n ∈ Z}. The element, a, which generates G is called a
generator of G and need not be unique.

Briefly, every cyclic group is Abelian (consider the form every element must take and the fact that
ajai = ai+j = aiaj). Moreover, it’s common to forget that 〈a〉 contains an for all n ∈ Z—this includes
0 and negative n!

� Theorem 3.4 (〈a〉 is a Subgroup).

Let G be a group, and let a be any element of G. Then, 〈a〉 is a subgroup of G.

Definition: Center of a Group
The center, Z(G), of a group G is the subset of elements in G that commute with every element
of G. In symbols, Z(G) = {a ∈ G

∣∣ ax = xa for all x ∈ G}.

� Theorem 3.5 (The Center of a Group is a Subgroup).

The center of a group G is a subgroup of G.

Definition: Centralizer of a in G
Let a be a fixed element of a group G. The centralizer of a in G, denoted C(a), is the set of all
elements in G that commute with a. In symbols, C(a) = {g ∈ G

∣∣ ga = ag}.

� Theorem 3.6 (C(a) is a Subgroup).

For each a in a group G, the centralizer of a is a subgroup of G.
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4 Cyclic Groups

� Theorem 4.1 (Criterion for ai = aj).

Let G be a group, and let a belong to G. If a has infinite order, then ai = aj if and only if
i = j. If a has finite order, say n, then 〈a〉 = {e, a, a2, . . . , an−1} and ai = aj if and only if n
divides i− j.

� Corollary (|a| = |〈a〉|).
For any group element a, |a| = |〈a〉|.

� Corollary (ak = e implies that |a| divides k).

Let G be a group and let a be an element of order n in G. If ak = e, then n divides k.

� Theorem 4.2 (〈ak〉 = 〈agcd(n,k)〉).
Let a be an element of order n in a group and let k be a positive integer. Then 〈ak〉 = 〈agcd(n,k)〉
and |ak| = n

gcd(n,k) .

� Corollary (Order of Elements in Finite Cyclic Groups).

In a finite cyclic group, the order of an element divides the order of the group.

� Corollary (Criterion for 〈ai〉 = 〈aj〉 and |ai| = |aj |).
Let |a| = n. Then 〈ai〉 = 〈aj〉 if and only if gcd(n, i) = gcd(n, j) and |ai| = |aj | if and only if
gcd(n, i) = gcd(n, j) .

� Corollary (Generators of Finite Cyclic Groups).

Let |a| = n. Then 〈a〉 = 〈aj〉 if and only if gcd(n, j) = 1 and |a| = |aj | if and only if
gcd(n, j) = 1 .

� Theorem 4.3 (Fundamental Theorem of Cyclic Groups).

Every subgroup of a cyclic group is cyclic. Moreover, if |〈a〉| = n, then the order of any
subgroup of 〈a〉 is a divisor of n; and, for each positive divisor k of n, the group 〈a〉 has
exactly one subgroup of order k–namely 〈an

k 〉.

Definition: Euler Phi Function
An important number-theoretic function defined by

φ(1) = 1

and for n > 1,

φ(n) = the number of positive integers less than n and relatively prime to n

Notice that, by definition, |U(n)| = φ(n).

n 1 2 3 4 5 6 7 8 9 10 11 12
φ(n) 1 1 2 2 4 2 6 4 6 4 10 4

� Theorem 4.4 (Number of Elements of Each Order in a Cyclic Group).

If d is a positive divisor of n, the number of elements of order d in a cyclic group of order n
is φ(d).

� Corollary (Number of Elements of Order d in a Finite Group).

In a finite group, the number of elements of order d is divisible by φ(d).
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5 Permutation Groups

Definition: Permutation of A
A permutation of a set A is a bijective function from A to A.

Definition: Permutation Group
A permutation group of a set A is a set of permutations of A that forms a group under function
composition.

Definition: The Symmetric Group of Degree n, Sn

The set of all permutations of {1, 2, . . . , n}; for n > 1, |Sn| = n!.

5.1 Permutation Notations

There exist two predominant permutation notations. The first is intuitive, placing every element in
the set in order, and then writing the element to which it is mapped by the permutation below it. For
example,

α =

[
1 2 3 4 5 6

]
2 1 4 6 5 3

is interpreted as specifying that the permutation α has the form α(1) = 2, α(2) = 1, α(3) = 4, and so
on. In contradistinction, the second permutation notation, known as cycle notation, was introduced
later by Cauchy and proves to be, while less intuitive, more useful for our purposes. Cauchy’s crucial
insight was noticing that every permutation can be written as a series of cycles. Thus, adapting our
example from above, we achieve

α = (12)(346)(5)

In actual use, it’s traditional to simply exclude any cycles of size 1. Thus,

α = (12)(346)

� Theorem 5.1 (Products of Disjoint Cycles).

Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

� Theorem 5.2 (Disjoint Cycles Commute).

If the pair of cycles α = (a1, a2, . . . , am) and β = (b1, b2, . . . , bm) have no entries in common,
then αβ = βα.

� Theorem 5.3 (Order of a Permutation (Ruffini-1799)).

The order of a permutation of a finite set written in disjoint cycle form is the least common
multiple of the lengths of the cycles.

� Theorem 5.4 (Product of Two Cycles).

Every permutation in Sn, n > 1 is a product of 2-cycles.

� Lemma.
If e = β1β2 . . . βr, where the β’s are 2-cycles, then r is even.
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� Theorem 5.5 (Always Even or Always Odd).

If a permutation α can be expressed as a product of an even (odd) number of 2-cycles, then
every decomposition of α into a product of 2-cycles must have an even (odd) number of 2-
cycles.

Definition: Even and Odd Permutations
A permutation that can be expressed as a product of an even number of 2-cycles is called an even
permutation. A permutation that can be expressed as a product of an odd number of 2-cycles is
called an odd permutation.

� Theorem 5.6 (Even Permutations Form a Group).

The set of even permutations in Sn forms a subgroup of Sn and is denoted An.

Definition: Alternating Group of Degree n, A(n)
The group of even permutations of n symbols is denoted by An and is called the alternating group
of degree n.

� Theorem 5.7.

For n > 1, An has order n!
2 .

6 Isomorphism

Definition: Group Isomorphism
An isomorphism φ from a group G to a group Ḡ is a bijective mapping (or function) from G onto
Ḡ that preserves the group operation. That is,

φ(ab) = φ(a)φ(b) for all a, b in G

If there is an isomorphism from G to Ḡ, we say that G and Ḡ are isomorphic and write G ≈ Ḡ.

6.1 Proving Two Groups are Isomorphic

There are four separate steps involved in proving that a group G is isomorphic to a group Ḡ.

Step 1 ‘Mapping’, Define a candidate for the isomorphism; that is a function φ : G→ Ḡ.

Step 2 ‘Injective’, Prove that φ is injective; that is, prove φ(a) = φ(b) implies a = b.

Step 3 ‘Surjective’, Prove that φ is surjective; that is, prove that ∀b ∈ Ḡ, there exists a ∈ G such
that φ(a) = b.

Step 4 ‘Operation Preserving’, Prove that φ is operation-preserving; that is, show that φ(ab) =
φ(a)φ(b) for all a, b in G.

� Theorem 6.1 (Cayley’s Theorem (1854)).

Every group is isomorphic to a group of permutations.
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� Theorem 6.2 (Properties of Isomorphisms Acting on Elements).

Suppose that φ is an isomorphism from a group G onto a group Ḡ. Then,

1. φ(eG) = φ(eḠ)

2. For every integer n and for every group element a in G, φ(an) = [φ(a)]n.

3. For any elements a and b in G, a and b commute if and only if φ(a) and φ(b) commute.

4. G =〈a〉 if and only if Ḡ = 〈φ(a)〉.

5. |a| = |φ(a)| for all a in G (isomorphisms preserve orders).

6. For a fixed integer k and a fixed group element b in G, the equation xk = b has the same
number of solutions in G as does the equation xk = φ(b) in Ḡ.

7. If G is finite, then G and Ḡ have exactly the same number of elements of every order.

� Theorem 6.3 (Properties of Isomorphisms Acting on Groups).

Suppose that φ is an isomorphism from a group G to a group Ḡ. Then,

1. φ−1 is an isomorphism from Ḡ to G.

2. G is Abelian if and only if Ḡ is Abelian.

3. G is cyclic if and only if Ḡ is cyclic.

4. If K is a subgroup of G, then φ(K) = {φ(k)
∣∣ k ∈ K} is a subgroup of Ḡ.

Definition: Automorphism
An isomorphism from a group G to itself is called an automorphism of G.

Definition: Inner Automorphism Induced by a
Let G be a group, and let a ∈ G. The function φa(x) = axa−1 for all x in G is called the inner
automorphism of G induced by a

� Theorem 6.4 (Aut(G) and Inn(G) are Groups).

The set of automorphisms of a group and the set of inner automorphisms of a group are both
groups under the operation of function composition.

� Theorem 6.5 (Aut(Zn) ≈ U(n)).

For every positive integer n, Aut(Zn) is isomorphic to U(n).
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7 Cosets and Lagrange’s Theorem

Definition: Coset of H in G
Let G be a group and let H be a subset of G. For any a ∈ G, the set {ah

∣∣ h ∈ H} is denoted by

aH. Analogously, Ha = {ha
∣∣ h ∈ H} and aHa−1 = {aha−1

∣∣ h ∈ H}. When H is a subgroup of
G, the set aH is called the left coset of H in G containing a, whereas Ha is called the right coset
of H in G containing a. In this case, the element a is called the coset representative of aH (or
Ha). We use |aH| to denote the number of elements in the set aH, and |Ha| to denote the
number of elements in Ha.

� Lemma (Properties of Cosets).

Let H be a subgroup of G, and let a and b belong to G. Then,

1. a ∈ aH

2. aH = H if and only if a ∈ H

3. aH = bH if and only if a ∈ bH

4. aH = bH or aH ∩ bH = ∅

5. aH = bH if and only if a−1b ∈ H

6. |aH| = |bH|

7. aH = Ha if and only if H = aHa−1

8. aH is a subgroup of G if and only if a ∈ H

� Theorem 7.1 (Lagrange’s Theorem: |H| divides |G|).
If G is a finite group and H is a subgroup of G, then |H| divides |G|. Moreover, the number

of distinct left (right) cosets of H in G is |G||H| .

� Corollary (|a| Divides |G|).
In a finite group, the order of each element of the group divides the order of the group.

� Corollary (Groups of Prime Order are Cyclic).

A group of prime order is cyclic.

� Corollary (a|G| = e).

Let G be a finite group, and let a ∈ G. Then, a|G| = e.

� Corollary (Fermat’s Little Theorem).

For every integer a and every prime p, ap mod p = a mod p.

� Theorem 7.2 (Classification of Groups of Order 2p).

Let G be a group of order 2p, where p is a prime greater than 2. Then G is isomorphic to
Z2p or Dp.
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8 External Direct Products

Definition: External Direct Product
Let G1, G2, . . . , Gn be a finite collection of groups. The external direct product of G1, G2, . . . ,
Gn, written as G1 ⊕G2 ⊕ . . .⊕Gn, is the set of all n-tuples for which the ith component is an
element of Gi and the operation is componentwise. In symbols,

G1 ⊕G2 ⊕ . . .⊕Gn = {(g1, g2, . . . , gn)
∣∣ gi ∈ Gi},

where (g1, g2, . . . , gn)(g′1, g
′
2, . . . , g

′
n) is defined to be (g1g

′
1, g2g

′
2, . . . , gng

′
n). It is understood that

each product gig
′
i is performed with the operation of Gi.

� Theorem 8.1 ( Order of an Element in a Direct Product ).

The order of an element in a direct product of a finite number of finite groups is the least
common multiple of the orders of the components of the element. In symbols,

|(g1, g2, . . . , gn)| = lcm(|g1|, |g2|, . . . , |gn|)

� Theorem 8.2 ( Criterion for G⊕H to be Cyclic ).

Let G and H be finite cyclic groups. Then G ⊕ H is cyclic if and only if |G| and |H| are
relatively prime.

� Corollary ( Criterion for G1 ⊕G2 ⊕ . . .⊕Gn to be Cyclic ).

An external direct product G1 ⊕ G2 ⊕ . . . ⊕ Gn of a finite number of finite cyclic groups is
cyclic if and only if |Gi| and |Gj | are relatively prime when i 6= j.

� Corollary ( Criterion for Zn1n2...nk
≈ Zn1 ⊕ Zn2 ⊕ . . .⊕ Znk

).

Let m = n1n2 . . . nk. Then Zm is isomorphic to Zn1
⊕ Zn2

⊕ . . .⊕ Znk
if and only if ni and

nj are relatively prime whenever i 6= j.

� Theorem 8.3 ( U(n) as an External Direct Product ).

Suppose s and t are relatively prime. Then U(st) is isomorphic to the external direct product
of U(s) and U(t). In short,

U(st) ≈ U(s)⊕ U(t).

Moreover, Us(st) is isomorphic to U(t), and Ut(st) is isomorphic to U(s).

� Corollary.

Let m = n1n2 . . . nk where gcd(ni, nj) = 1 for all i 6= j. Then,

U(m) ≈ U(n1)⊕ U(n2)⊕ . . .⊕ U(nk).

9 Normal Subgroups and Factor Groups

Definition: Normal Subgroup
A subgroup H of a group G is called a normal subgroup of G if aH = Ha for all a in G. We
denote this by H �G.

It’s important to note that a normal subgroup isn’t necessarily Abelian. While aH = Ha, it’s not
necessary that ah = ha for a particular h ∈ H.
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� Theorem 9.1 ( Normal Subgroup Test ).

A subgroup H of G is normal in G if and only if xHx−1 ⊆ H for all x in G.

� Theorem 9.2 ( Factor Groups ).

Let G be a group and let H be a normal subgroup of G. The set G/H = {aH
∣∣ a ∈ G} is a

group under the operation (aH)(bH) = abH.

� Theorem 9.3 ( The G/Z Theorem ).

Let G be a group and let Z(G) be the center G. If G/Z(G) is cyclic, then G is Abelian.

� Theorem 9.4 ( G/Z(G) ≈ Inn(G) ).

For any group G, G/Z(G) is isomorphic to Inn(G).

� Theorem 9.5 ( Cauchy’s Theorem for Abelian Groups ).

Let G be a finite Abelian group and let p be a prime that divides the order of G. Then G has
an element of order p.

Definition: Internal Direct Product of H and K
We say that G is the internal direct product of H and K and write G = H ×K if H and K are
normal subgroups of G and

G = HK and H ∩K = {e}.

Definition: Internal Direct Product H1 ×H2 × . . .×Hn

Let H1, H2, . . ., Hn be a finite collection of normal subgroups of G. We say that G is the internal
direct product of H1, H2, . . ., Hn and write G = H1 ×H2 × . . .×Hn, if

1. G = H1H2 · · ·Hn = {h1h2 · · ·hn
∣∣ hi ∈ Hi}

2. (H1H2 · · ·Hi) ∩Hi+1 = {e} for i = 1, 2, 3, . . . , n− 1.

� Theorem 9.6 ( H1 ×H2 × . . .×Hn ≈ H1 ⊕H2 ⊕ . . .⊕Hn ).

If a group G is the internal direct product of a finite number of subgroups H1, H2, . . ., Hn,
then G is isomorphic to the external direct product of H1, H2, . . ., Hn.

� Theorem 9.7 ( Classification of Groups of Order p2 ).

Every group of order p2, where p is a prime, is isomorphic to Zp2 or Zp ⊕ Zp.

� Corollary.

If G is a group of order p2, where p is a prime, then G is Abelian.
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10 Group Homomorphisms

Definition: Group Homomorphism
A homomorphism φ from a group G to a group Ḡ is a mapping from G to Ḡ that preserves the
group operation; that is, φ(ab) = φ(a)φ(b) for all a,b in G.

Definition: Kernel of a Homomorphism
The kernel of a homomorphism φ from a group G to a group Ḡ is the set {x ∈ G

∣∣ φ(x) = eḠ}.
The kernel of φ is denoted by Ker φ.

� Theorem 10.1 ( Properties of Elements under Homomorphisms ).

Let φ be a homomorphism from a group G to a group Ḡ and let g be an element of G. Then

1. φ(eG) = eḠ

2. φ(gn) = (φ(g))n for all n in Z

3. If |g| is finite, then |φ(g)| divides |g|.

4. Ker φ is a subgroup of G.

5. φ(a) = φ(b) if and only if aKer φ = bKer φ.

6. If φ(g) = g′, then φ−1(g′) = {x ∈ G
∣∣ φ(x) = g′} =gKer φ.

� Theorem 10.2 ( Properties of Subgroups under Homomorphisms ).

Let φ be a homomorphism from a group G to a group Ḡ and let H be a subgroup of G. Then

1. φ(H) = {φ(h)
∣∣ h ∈ H} is a subgroup of Ḡ.

2. If H is cyclic, then φ(H) is cyclic.

3. If H is Abelian, then φ(H) is Abelian.

4. If H is normal in G, then φ(H) is normal in φ(G).

5. If |Ker φ| = n, then φ is an n-to-1 mapping from G to Ḡ.

6. If |H| = n, the |φ(H)| divides n.

7. If K̄ is a subgroup of Ḡ, then φ−1(K̄) = {k ∈ G
∣∣ φ(k) ∈ K̄} is a normal subgroup of

G.

8. If φ is surjective and Ker φ = {e}, then φ is an isomorphism from G to Ḡ.

� Corollary ( Kernels are Normal ).

Let φ be a group homomorphism from G to Ḡ. Then Ker φ is a normal subgroup of G.

� Theorem 10.3 ( First Isomorphism Theorem (Jordan, 1870)).

Let φ be a group homomorphism from G to Ḡ. Then the mapping from G/Ker φ to φ(G) by
gKer φ→ φ(g) is an isomorphism. In symbols, G/Ker φ ≈ φ(G).

� Corollary.

If φ is a homomorphism from a finite group G to Ḡ, then |φ(G)| divides |G| and |Ḡ|.
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� Theorem 10.4 ( Normal Subgroups are Kernels ).

Every normal subgroup of a group G is the kernel of a homomorphism of G. In particular, a
normal subgroup N is the kernel of the mapping g → gN from G to G/N .
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